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Abstract-The dynamic stability analysis of isotropic plates made of a nonlinear viscoelastic
material is performed within the concept of the Lyapunov exponents. The material behavior is
modeled according to the Leaderman representation of nonlinear viscoelasticity. The influence of
the various parameters involved on the possibility of instability to occur is investigated. It is also
shown that in some cases the system is chaotic.

INTRODUCTION

The subject of the dynamic stability of structures subjected to in-plane loads is one of the
most interesting problems in the field of structural vibration. When plates are considered,
the phenomena can be observed, for example, in bridge dynamics or wingflutter (instability
of aircraft in air flow). In the linear case, the behavior is governed by the Mathieu equation
and the stability characterizations are given by the Strutt diagram. Instability here is in the
sense that the amplitude of the response increases without bound. The problem was exten
sively investigated by Bolotin (1964) and further results were given, for example, by Evan
Iwanowski (1965, 1976) in a review paper and a monograph, respectively.

When the structure is made of a linear viscoelastic material, the problem becomes
much more complicated since the equation of motion turns out to be an integro-differential
one, rather than an ordinary differential equation as in the elastic case. To solve this
problem, Matyash (1964) used the averaging method, while Stevens (1966), Szyskowski
and Gluckner (1985) and Gluckner and Szyskowski (1987) analysed it by using the spring
dashpot representation. The dynamic stability of viscoelastic homogeneous plates inves
tigated within the concept of the Lyapunov exponents was performed by Aboudi et al.
(1990). This procedure was used also by Cederbaum et al. (1991) to investigate the dynamic
stability of shear deformable viscoelastic laminated plates. In these two studies the Boltz
mann superposition principle was incorporated, enabling the modeling of any linear
viscoelastic material.

However, it is well known that many materials (e.g. polymers) are not linear and
should be modeled nonlinearily in order to give an adequate description of their behavior.
Smart and Williams (1972) made a comparison investigation about the response of poly
propylene and polyvinylchloride, obtained by using three single integral representations of
nonlinear viscoelasticity; the Leaderman model (1962), the Schapery model (1969) and the
Bernstein-Kearsley-Zapas model (Bernstein et aI., 1963; Zapas and Craft, 1965). Their
main conclusion was that the Leaderman model is the most useful representation where
prediction and simplicity are concerned. In the present investigation we adopt this result
and use the Leaderman model to derive the integro-differential equation of motion, which
is nonlinear and with time-dependent coefficients.

The stability analysis of the nonlinear viscoelastic plate is based on the evaluation of
the associate Lyapunov exponents. If one of the Lyapunov exponents is found to be positive
then, according to Chetaev (1960), the unperturbed motion is unstable. Thus, in order to
determine the condition of the plate, it suffices to compute the largest Lyapunov exponent
only.
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PROBLEM FORMULATION

The equation of motion of an isotropic plate subjected to in-plane loads (Nn = 0) is
[see e.g. Timoshenko (1963)]

Mxx.xx +2Mxy.x" +Myy.,'" +N, W.n +Nt' W.yy + ph W = 0 (1)

where N, and Ny are in-plane loads in the x and y directions, respectively (see Fig. I), W is
the deflection in the transverse (z) direction, p is the material density and h is the plate
thickness. The stress couples, Mij' are given by

i,j = X,Y (2)

and (1il are the stress components. For nonlinear viscoelastic materials the stress-strain
constitutive relations, as given by Leaderman (1962), are

a(t) = Q(O)g[e(t)] + r' Q(t-r)g[e(r)] dr
Jo+

where

(3)

which for small strain gee) -+ e. f3 and yare constants. For the state of plane stress for
isotropic plates

E(t)
QII (t) == Q22(t) = l-v(t)

Ql2 (t) = V(t)Qll (t) ; Q66(t) = ~(l- v(t»Q 11 (t) (4)

where E(t) is a time-dependent relaxation function which at t = 0 denotes the initial Young
modulus of the material, while vet) is the time-dependent Poisson ratio.

For a homogeneous thin plate, the strain-displacement relations are given by

exx = -zWxx

ex.\' = - 2zW,x," (5)

Using the separation ofvariables method, the transverse displacement is written in the form

x

y
Fig. 1. Scheme of a plate subjected to in-plane loadings.
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W(x,y, t) = ([J(x,y)!(t)

so that by substituting eqns (5) and (6) into eqn (2), the stress couples are given by

M u = II ([J,xx[QII(O)!(t)+L+ QII (t-r)!(r) dt]

+11([J,y..[QdO)!(t) + 1+ QJ2(t-r)!(r)dr]

+12«([J",x)
3

[ QII(O)P(t)+ L+ QII(t-r)P(r)dr]

+I2«([J,yy)3 [ QI2(O)!3(t)+ 1+ Q12(t-r)!3(r) dr]

M yy = II ([J",,{Q22(O)!(t) + 1+ Q22(t-r)!(r) dtJ

+11([J,xx[QI2 (O)!(t) + 1+ Qdt-r)!(r)dr]

+12«([J,yIY [ Q22 (0)!3(t)+ I+ Q22U- r)!3(t)dt]

+I2«([J,xJ 3[ Q12(O)p(t) + 1+ QI2u-r)!3(r)dt]

M xy = 211([J,x{Q66(0)!U) + 1+ Q66(t-r)!(r)dr]

where II =h3/12, 12 = Yxxh5/80 and 13 = YXyh5/80.
The in-plane loadings, which contain constant and periodic terms, are given by

Nx = N",+Nxdcos (}t

N" = Nvs+Nydcos (}t
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(6)

(7)

(8)

where t is the time and (} is the load frequency. Using eqn (4) in eqn (7), together with eqn
(8), eqn (1) is rewritten in the form

V4 <pII [ QII (O)!(t) +I+ QIl (t- r)!(t) drJ+ {I2[(<P,xx)3Lx +12[(<p.y"l],yy + I2v[(<p,yy)3Lx

+ I2v[(<p,xx)3l.vy + 8I3(1- V)[(<p.,<y)3Ly}[ QII (O)P(t) + L+ QII (t-r)p(r) drJ

+ (Nxs +Nxdcos (}t)([J..,x!(t)+ (Nvs +N.vdCOSOt)<p.yy!(t)+ph<p!(t) = 0 (9)

where
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Since eqn (9) is a nonlinear partial differential equation with time-dependent
coefficients, for which an exact solution is generally not available, we will use the Galerkin
method for finding the unknown deflection f(t) [see Bolotin (1964); Nayfeh and Mook
(1979)]. In order to satisfy the boundary conditions ofa simply-supported plate, the solution
of the linear system [the linear system is given when substituting into eqn (9) 12 = 13 = 0]
is given by

W ) f f
· nx . nv

(x'J', t = (t)q>(x,y) = (t) sm a sm b

where a and b are the side lengths of the plate.
Following the Galerkin method, the following equation of motion is derived

(10)

!(t) +Q2[1_ 211 cos (8t)]f(t) +kf3(t)

= _w2 (' D(t-r)f(r)dr-k (' D(t-r)f3(r)dr (11)
Jo+ Jo+

where a = b = ( and

Q2 = w2 [ I - N u
; N" J,

N= 4n
2

/ j Qll(0)
2 't

9n8Qll (0)
k = [/2 (1 +v)+4/3(1-1')],

8pht8 .
11 = '.

2[N-(N" +N)'s)]
(12)

Here, wand Q represent the natural frequency of lateral vibration of unloaded and loaded
plates, respectively, N is the Euler critical load, 11 is the excitation parameter and k is the
coefficient of nonlinearity.

Equation (11) is the nonlinear integro-differential equation which governs the motion
of the nonlinear viscoelastic plate subjected to in-plane parametric loading.

METHOD OF SOLUTION

Interest here is in the stability of the unperturbed equilibrium of the nonlinear
viscoelastic plate. To this end the integra-differential eqn (11) is investigated. For the
treatment of nonlinear differential equations with time-dependent coefficients, Lyapunov
introduced the concept of characteristic numbers, the sign of which determines whether or
not the unperturbed motion is stable [see Hahn (1967)]. The negative values of these
characteristic numbers are referred to as the Lyapunov exponents.

According to Lyapunov, if all the exponents are negative then the unperturbed motion
is asymptotically stable. In addition, Chetaev (1960, 1961) showed that if one of the
Lyapunov exponents is positive then the unperturbed motion is unstable. Thus, it suffices
to compute the largest Lyapunov exponent in order to determine the stability of the
unperturbed motion of the nonlinear viscoelastic plate in question. To derive the largest
Lyapunov exponent of the system we use the following procedure [see e.g. Goldhirsch et
af. (1987)] : consider the system of ordinary differential equations
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x= F(x,t);

for a given solution of eqn (13), x(t), define the matrix

The largest Lyapunov exponent is then determined by solving the equations

Y Gy
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(13)

(14)

(15)

and performing the following steps:

I. for the first time interval, At, solve eqn (IS) by considering initial conditions, yeO),
normalized such that II yeO) II = I, where 11'11 is the Euclidean norm;

2. compute J.1! = In II y(At) II ;
3. let ZeAl) = y(At)/IIY(At) II ;
4. for the second time interval, 2At, solve eqn (15) with z(At) as the initial condition

[G has to be changed according to eqn (14)] and determine J.12 = In 1IY(2At)1I :
5. repeat the process for n iterations.

One defines then

n

L J.1m
m=1

1.--
I - nAt (16)

which, for n - 00, is the largest Lyapunov exponent.
In order to compute 1.1> the governing eqn (ll) must be reduced to a system of first

order equations of the form of eqn (IS). Consider a linear solid material for which the
relaxation function is given by

E(t) == a+b e-at (17)

where a, band ct are appropriate parameters. Thus, for material with time-independent
Poisson ratio

(18)

so that

(19)

and after differentiating, can be written as

(20)

where

Substituting eqn (20) into eqn (11), we obtain
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{(t) (}2 k ifT- + T(I -211 cos 8t1!(t) + ~ /,(t) = t/t2(r)(w2 f(r)+kf3(r)]dr
'1'1 '1'1 '1'1 0"

(21)

which, after differentiating via Leibnitz's rule, the following ordinary differential equation
is derived

lu) - ~: ~;~ /(t) + [0
2
(1-211 cos 8t)+ 3kFU)]j\t)

[
n"( i1 ~I(t) , .+ -u· 1-2I1cosvt)t/t\(I)+Qk2110Sm(8t)

-W
2
t/tl(t)t/t2(t)]f(t)-k[t/t2(t)t/tI(t)+ ~:~:;]P(t)= 0, (22)

Finally, by using eqn (20), eqn (22) is written as

lu) +IX/(t) +[Q2(1- 2Yf cos Ot) +3k!2(t)Jf(t)

[
n" 2 • crBW

2
] kaA+ au"(1-211CoSOt)+21100 sm8t--- !(t)+ __ f3(t) =0.

A+B A+B
(23)

Equation (23) can be written in the form of eqn (13). In addition, the various elements
of the matrix G are given by

Gil =GD =G21 =G22 =O

GI2 G23 = 1

G 31 = -IXQ2(l-211 cos Bt)-211002 sin (Ot) + A:B(&02 3kAf2)-6kff

G n -02 (1 2'1 cos ()t)-3kF: G 33 =-ct. (24)

NUMERICAL RESULTS AND DISCUSSION

In this section the stability ofeqn (23) is analysed with respect to the various parameters
involved. The solution of this equation and ofeqn (15) is obtained within the Runge-Kutta
method (Matlab, 1991). First, it is recognized that for the case where IX = k = 0, one obtains
the well-known Mathieu equation, which was extensively investigated, e.g. by McLachlan
(1964). When k = 0 and IX -:f 0 we have

I+Q2[1-2Yf cos Bt]! = _w2 [I ])(t-r)f(r) dr
J04

(25)

which describes the motion of a linear viscoelastic structure, The stability of this equation
was investigated by Aboudi et al. (1990) by using the concept of Lyapunov exponents.
Later on, Cederbaum and Mond (1992) and Cederbaum (1992) investigated this equation
analytically, and obtained the expression for the critical (minimum) value of the excitation
parameter, 'Ie' at which instability may occur. For the case of the standard linear solid
model it is

2. 2 rxB
11 =-ID(O)I =--

C (} BA+B
(26)
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and it will be used later on. For the case where Q( = 0 and k # 0, one obtains

(27)

representing a nonlinear version of the Mathieu equation, and which was examined, e.g.
by Bolotin (1964).

In the following, we consider the general case where Q( # 0 and k # O. The numerical
results were obtained by using A = 0.1 and B = 0.9, and where N" = N vs = 0, n = w = 1
and e= 2w.

Figure 2 shows the response, f(t), as well as the largest Lyapunov exponent, AI, derived
for the case where Q( = 0.01, k = 0.01 and '7 is equal to (a) 0.004, (b) 0.009 (= '7e) and (c)
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Fig. 2. The response, f, and the largest Lyapunov exponent, A" for IX = 0.01, k = 0.01 and (a)
1'/ = 0.004, (b) 1'/ = 0.009, (c) 1'/ = 0.5.
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0.5. In Fig. 2(a) the system is asymptotically stable, that is Al is negative and the response
is approaching zero. In Figs 2(b) and (c) the system is stable with limit cycle and AI ----> O.
Yet, in Fig. 2(c) the amplitude is much larger than that in Fig. 2(b) [when '1 > '1c. the
amplitude can be approximated by A = I/Jk, see e.g. Bolotin (1964)].

In Fig. 3, k = 0.01, '7 = 0.5 and the following cases for IX are considered; (a) 0, (b)
0.000001 and (c) 0.0001. In Figs 3(a) and (b), Al is positive, indicating instability. For
relatively large IX [case (c)] Al ----> 0 and the system is stable.

The response and the largest Lyapunov exponent shown in Fig. 4 are for the cases
where IX = 0.000001, '7 = 0.5 and (a) k = 0, (b) k = 0.00001 and (c) k 1. Figure 4(a)
represents a linear viscoelastic case with '7 > '7e and thus the system is unstable with positive
Al and amplitude which grow exponentially. In the nonlinear case, Fig. 4(b), the system is
also unstable (positive Lyapunov exponent), but with finite amplitude. In Fig. 4(c) ;'1 ----> 0
so that the system is stable (with relatively small amplitude).
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Fig. 3. The response,/. and the largest Lyapunov exponent, AI> for k = 0.01, '1 = 0.5 and (a)('J. = O.
(b) IX = 0.000001, (c) :x = 0.0001.
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Fig. 4. The response"f, and the largest Lyapunov exponent for rx = 0.000001, 11 = 0.5 and (a) k = 0,
(b) k = 0.00001, (c) k I.

From the above we may conclude the following.

1. Due to the nonlinear viscoelasticity, the response remains bounded even at insta
bility (contrary to the case of linear viscoelastic material). Moreover, high non
linearity stabilizes the system, as compared with the unstable case with nonlinearity
[see Fig. 4(c»).

2. The material coefficient, Ct, has a great influence on the system in the sense that an
unstable system may become stable at large values of Ct [see Fig. 3(c)]. The above is
correct at 11 > 110' But Ct is one of the parameters by which 11c is determined by [see
eqn (28»), in a way that at large Ct, 11e is increased so that Ct stabilizes the system in
this respect too.

3. At 11 < 11e, the system is asymptotically stable regardless of the values of Ct and k.
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Fig. 5. The Fourier power spectrum of (a) the case of Fig. 4(b), (b) the case of Fig. 2(b).

Finally, it is noted that the Lyapunov exponents are served also as a powerful tool in
the study of chaotic motion, and actually the existence of at least one positive Lyapunov
exponent indicates a chaotic state [see e.g. Moon (1987); Wolf et al. (1985); Goldhirsch
(1987)). This state may also be realized if the response has a broad spectrum offrequencies.
Figure 5(a) exhibits the Fourier power spectrum of the instability case given in Fig. 4(b),
while Fig. 5(b) shows the same but for the stable case shown in Fig. 2(b). Thus, we believe
that more attention should be given to the chaotic state possible in this problem, and this
is the aim of future work.
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